

IBM Is Serious About Games

Every New Game Console is Powered by IBM

* Chips not to scale

Sony

PlayStation®3

Nintendo Wii®

_	_	
_		
	_	

Why Does IBM Care About Games?

- IBM makes high performance servers, so why games?
 - Servers are high margin, but low volume
 - Technology investment for server leadership is very expensive
 - e.g. 300mm fab in East Fishkill, NY = \$3B

Game chips are high volume

- Game chips expected to generate big revenue for IBM
- Help amortize the cost of server investment
- Provide high volume part numbers for line learning / efficiency

Games Are BIG Business

U.S. computer and video game DOLLARS sales growth

Source: Entertainment Software Association, "Essential Facts about the Computer and Video Game Industry," 2006 sales, demographic and usage data.

As games get more popular...

Video games sales are driven by the games-console cycle. Every five to six years, console manufacturers such as Sony, Nintendo and Microsoft introduce a new generation of equipment, triggering new growth in games sales. This year marks the start of a new console cycle. According to In-Stat/MDR, next-generation game-console shipments will hit 17m in 2006, 27m in 2007 and 33.5m in 2008.

Games Generate Great Press for IBM

"It was originally conceived as the microprocessor to power Sony's [PS3], but it is expected to find a home in lots of other broadbandconnected consumer items and in servers too." -- IEEE Spectrum

"...Cell could power hundreds of new apps, create a new videoprocessing industry and fuel a multibillion-dollar build out of tech hardware over ten years." -- Forbes

Why Did the Game Companies All Choose IBM?

Deep architectural and design experience

- 50 years of server leadership

Technology Leadership

- Industry leading Si process
- Earliest introduction of new technologies SOI, Cu, low-K, strained Si

Open architecture

- Power architecture is now the de facto architecture for games
- 'We'll do it your way'

Platform partnership manufacturing

- Deep fab partnership
- Multiple sources of supply

Technical Challenges of Games

Performance is Everything !

Business Unit or Product Name

10

Performance - Moore's Law of Semiconductors

11

_	

Materials Innovations to Keep Up

hydrogen 1 H	Before 90's										helium 2 He							
lithium 3	beryllium 4						S	ince	e the	<u>90'</u>	S		boron	carbon	nitrogen	oxygen	fluorine	neon 10
Li	Be						-				- -		5 B	C C	7 N	Ő	F	Ne
sodium 11	magnesium	Beyond 2005								chlorine	argon 18							
Na 22.990	12 Mg												13 Al	14 Si	15 P	S 32.065	17 Cl	Ar 39.948
potassium 19	calcium		scandium	titanium	vanadium	chromium	manganese 25	iron 26	cobalt	nickel	copper	zinc	gallium 31	germanium	arsenic	selenium 34	Bromine	krypton 36
K 39.098	20 Ca		21 Sc	22 Ti	23 V	24 Cr	Mn 54.938	Fe	27 Co	28 Ni	29 Cu	30 Zn	Ga 69.723	32 Ge	33 As	Se 78.96	35 Br	Kr 83.80
rubidium 37	strontium		yttrium	zirconium	niobium	molybdenun	technetium 43	ruthenium	rhodium	palladium	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon
Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	TC	43 Ru	45 Rh	45 Pd	Ag		In	Sn	Sb	Te	128.90	54 Xe
caesium 55	barium	57-70	lutetium 71	hafnium	tantalum	tungsten	Rhenium	osmium 76	iridium	platinum	gold 79	mercury 80	thallium 81	lead 82	bismuth	polonium 84	astatine 85	radon 86
Cs	56 Ba	*	Lu	72 Hf	73 Ta	29 W	75 Re	OS	77 Ir	78 Pt	Au	Hg	204.38	Pb	83 Bi	Po	At	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112	204100	ununquadium 114		1200	12.101	
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
			lanthanium	cerium	Praeseo	neodymium	promethium 61	samarium	europlum	gadollinium	terbium	dvsprosiur	holmium	erbium	thullium	vtterbium		
	*lantha	noids	57	58	dymium 59	60	Pm	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Nd	[145]	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**actine	oids		232.04	Pa	U 238.03	Np	Pu	Am		Bk	Cf	ES	Fm	Md	NO		

To Put That In Perspective ...

If cars had advanced at that rate:

- A Rolls Royce would cost \$0.18
- It would go 176,000 MPH
- Get 64,000 MPG

If planes had advanced at that rate

- It would take 5.5 seconds to fly from L.A. to NYC
- -... and would reboot randomly and fall out of the sky

13

But Can It Go On Forever ?

Blade running

Number of blades per razor system

AND IN	L		Carlos and a second as	
Duoin		hit or Drod	List No	ma
	IESS L) (** i 11 1111) (**) Altin russi A((*)) (**		
			actica	

Scaling - The Way it Was

The smaller you get

 If lithography dimensions, gate thickness and supply voltage go down by a factor of ~1.4 every 2 years

The faster you go

14

- Your chip will run 1.4 X faster
- Be ~ $\frac{1}{2}$ the size
- And burn roughly half the power

SCALING:

RESULTS:

Higher Density: $\sim a^2$ Higher Speed: $\sim a$ Power/ckt: $\sim 1/a^2$

Power Density:~Constant

Power – The Emerging Discontinuity

 Passive power continues to explode

Power components:

- Active power
- Passive power
- Gate leakage

15

silicon bulk field effect transistor (FET)

16

Power Impacts Performance

Further Impacts of Power

- Power is a major concern as it drives heat, reliability, fan noise
- So we design cores for power constrained performance

Why Is Cost So Important?

Chip development costs are significant

- e.g. Building Cell took \$400M (STI), 5 years and 450 people
- Development costs must be recovered by software sales
- Drives longer product lifecycle 💥 5 years

How Do We Beat Scaling ?

19

_	
_	

System Design **Integration Driven** Applications System Middleware Level O/SHypervisor Integration Cluster Scaling Driven Multiple Cores Applications Embedded Memory System Middleware **Accelerators** O/S Power Management Compilers Interconnects Chip Bus Switch Fabric Chip Memory Interfaces Cache High Speed I/O Level Semiconductors Compilers Integration **Processor Core** Semiconductors Cache **Processor Core** Processor Packaging Cache I/OPackaging Cooling I/OInterconnect Cooling

_		- N.			_
		_	-	-	_
	-	_		-	-
_		_			_

E.g.: Microsoft Xbox 360

- 3-Way Symmetric Multi-Processor
 - IBM PowerPC Architecture®
 - Specialized Function VMX
 - 3.2GHz
 - Multithreading

Firsts:

- First 3-way SMP in volume production
- Silicon tape-out to > 1 million parts in less than one year
- Highest frequency IBM Power Architecture[™] core shipped at the time

		- N.		
1.000				
	_	_		_
-	_			
_	_	_	_	_

E.g.: Cell Processor

- 250M transistors ... 235mm2
- Top frequency >4GHz in lab
- > 200 GFlops (SP) @3.2GHz
- > 20 GFlops (DP) @3.2GHz
- Up to 25.6 GB/s memory B/W
- Up to 70+ GB/s I/O B/W
 - Practical ~ 50GB/s

22

- 100+ simultaneous bus transactions
 - 16+8 entry DMA queue per SPE

What Does Multi-Core Really Buy You?

Terragen Intel Pentium Terrain Rendering Engine STI Cell

Ray Casting

_		-	_
		- N.	
	_	_	
_	_		
		_	_ 7 _

Cell B.E. Chip

Building New Businesses from Game Processors

3D Visualization via Volumetric Rendering for Medical Images

PC Solution ~6 minutes to render entire volume ~2 seconds per slice

Cell Solution ~2 seconds to render entire volume

Courtesy of Mercury Computer Systems http://www.mc.com/cell/media/medium.cfm

It's Just Ducky

Summary

- IBM has locked down the games industry
 - We're working hard to keep it
- Innovations are aimed at managing performance, cost, power
 - Multi-core, cost efficient, low power designs
- Leveraging investment in game λP to create new opportunities

So What?

- IBM Innovation made these chips possible
- Spread the word Video games are cool and so are we!
- What could you use a small, fast supercomputer for?